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A B S T R A C T   

Functional connectivity networks (FCNs) provide a potential way for understanding the brain organizational 
patterns and diagnosing neurological diseases. Currently, researchers have proposed many methods for FCN 
construction, among which the most classic example is Pearson’s correlation (PC). Despite its simplicity and 
popularity, PC always results in dense FCNs, and thus a thresholding strategy is usually needed in practice to 
sparsify the estimated FCNs prior to the network analysis, which undoubtedly causes the problem of threshold 
parameter selection. As an alternative to PC, sparse representation (SR) can directly generate sparse FCNs due to 
the l1 regularizer in the estimation model. However, similar to the thresholding scheme used in PC, it is also 
challenging to determine suitable values for the regularization parameter in SR. To circumvent the difficulty of 
parameter selection involved in these traditional methods, we propose a hyperparameter-free method for FCN 
construction based on the global representation among fMRI time courses. Interestingly, the proposed method 
can automatically generate sparse FCNs, without any thresholding or regularization parameters. To verify the 
effectiveness of the proposed method, we conduct experiments to identify subjects with mild cognitive impair-
ment (MCI) and Autism spectrum disorder (ASD) from normal controls (NCs) based on the estimated FCNs. 
Experimental results on two benchmark databases demonstrate that the achieved classification performance of 
our proposed scheme is comparable to four conventional methods.   

1. Introduction 

Resting state functional magnetic resonance imaging (rs-fMRI), 
which measures the bold-oxygen-level-dependent (BOLD) signals of 
subjects without performing any explicit task, has been widely used in 
the field of neuroimaging analysis [1]. In practice, the BOLD fMRI is not 
quantitative (without unit), and thus it is meaningless to simply compare 
the signal intensity between different subjects [2]. In contrast, func-
tional connectivity network (FCN), which tends to capture the de-
pendency between BOLD signals of brain regions, provides an effective 
way of comparing different subjects, and has been used to discover 
potential neuroimaging biomarkers for diagnosing neurological disor-
ders [3,4], such as Alzheimer’s disease and its prodromal state (i.e., mild 
cognitive impairment, MCI) [5,6], Autism spectrum disorder (ASD) [7, 
8], and Parkinson’s disease [9], etc. 

Mathematically, FCN can be expressed by a graph, where each node 
corresponds to a specific region-of-interest (ROI) in the brain and each 

edge delineates the dependency between the BOLD signals associated 
with a pair of ROIs [10,11]. In order to estimate the edges in FCN, re-
searchers have proposed many different schemes, such as Pearson’s 
correlation (PC) based method [12], sparse representation (SR) based 
method [13], dynamic time warping distance (DTW) [14] and dynamic 
causal model (DCM) [15]. In this paper, we mainly focus on methods 
based on the second-order statistics, including PC and SR, because a 
recent study [16] has empirically validated that they are more effective 
than many complex higher-order methods. 

Despite its simplicity and popularity, PC always yields dense FCN in 
which all nodes are connected to each other. In fact, the brain is widely 
accepted to organize in a form of sparse network, meaning that the PC- 
based FCN may include a substantial percentage of spurious connec-
tions. To remove these uninformative/noisy connections, a thresholding 
operation is generally involved as a post-processing step to sparse the 
initially constructed FCN [17,18]. However, the thresholding strategy 
has two major disadvantages. First, it is often challenging to determine 

* Corresponding authors. 
E-mail addresses: zhanglimeilcu@163.com (L. Zhang), mxliu1226@gmail.com (M. Liu).   

1 L. Sun and Y. Xue contributed equally to this work.. 

Contents lists available at ScienceDirect 

Artificial Intelligence In Medicine 

journal homepage: www.elsevier.com/locate/artmed 

https://doi.org/10.1016/j.artmed.2020.102004 
Received 13 April 2020; Received in revised form 14 October 2020; Accepted 15 December 2020   

mailto:zhanglimeilcu@163.com
mailto:mxliu1226@gmail.com
www.sciencedirect.com/science/journal/09333657
https://www.elsevier.com/locate/artmed
https://doi.org/10.1016/j.artmed.2020.102004
https://doi.org/10.1016/j.artmed.2020.102004
https://doi.org/10.1016/j.artmed.2020.102004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artmed.2020.102004&domain=pdf


Artificial Intelligence In Medicine 111 (2021) 102004

2

the optimal value for thresholding FCNs in a specific problem. Second, it 
usually leads to different connection densities across subjects, which in 
turn results in a statistical bias between patient and normal group. 
Although several schemes have been improved towards addressing the 
above problems, the thresholding selection in PC-based methods 
currently remains a conundrum [19]. 

As an alternative to PC, partial correction can explain more complex 
interactions among multiple ROIs. However, the estimation of partial 
correction has an effect of amplifying noise, and is usually ill-posed due 
to the singularity of the sample covariance matrix [20]. To overcome 
these problems, an l1-norm regularizer is generally incorporated into the 
partial correction model, which results in the popular SR-based method 
for FCN construction. Unfortunately, similar to the thresholding scheme 
used in PC, it is also difficult for SR to determine the optimal value for 
the regularization parameter when estimating FCNs. 

To circumvent the difficulty of parametric selection, in this paper, we 
propose a novel FCN estimation scheme based on a hyperparameter-free 
graph learning model, as illustrated in Fig. 1. Different from PC-based 
and SR-based approaches that need to select optimal thresholds or the 
regularization parameters for sparsifying FCNs, the proposed method 
does not contain any free parameter, but, interestingly, can automati-
cally generate sparse FCNs. To validate the effectiveness of our proposed 
method, we first apply it to estimate FCNs, and then use the estimated 
FCNs for classification. Two classification tasks are considered: (1) MCI 
identification (i.e., MCI vs. NC classification) on the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset, and (2) ASD identification (i.e., 
ASD vs. NC classification) on the Autism Brain Imaging Data Exchange 
(ABIDE) dataset. Experimental results on these two benchmark data-
bases suggest that the performance of our proposed method is compa-
rable to competing methods for FCN construction. For the convenience 
of replicating our work, we share the pre-processed data and source code 
online2 . 

The rest of this paper is organized as follows. In Section 2, we first 
introduce the preprocessed data, and review the most relevant studies, 
and then propose the novel FCN estimation scheme, including its model 
and algorithm. In Section 3, we describe the experimental setting and 
report the experimental results. In Section 4, we investigate the effect of 
brain parcellation, data preprocessing step, feature selection and FCN 
modelling parameters on the final results, and discuss the selection of 
baseline methods and the discriminative features (potential biomarkers) 
for identifying brain disorders. We finally conclude this paper in Section 
5. 

2. Materials and methods 

In this section, we describe the data preparation (including data 
acquisition and preprocessing), and FCN construction methods 
(including the baseline and the proposed methods). 

2.1. Data preparation 

Two benchmark databases are used in this study to verify the 
effectiveness of the proposed method, including the public ADNI and 
ABIDE databases with rs-fMRI data. For the ADNI database, 137 subjects 
(68 MCIs and 69 NCs) were selected and preprocessed as in a recent 
study [21]. In Table 1, we represent the demographic and clinical in-
formation of subjects used in this study. Note that, the information of 
these subjects shown in Table 1 conforms to the general inclusion/ex-
clusion criteria for samples in the ADNI dataset, and the criteria avail-
able are briefly listed below: (1) NC subjects: Mini-Mental State 
Examination (MMSE) scores between 20 and 30 (inclusive), a Clinical 
Dementia Rating (CDR) of 0, nondepressed, non-MCI, and 
non-demented; (2) MCI subjects: MMSE scores between 24 and 30 

(inclusive), impaired memory, a CDR of 0.5, absence of significant levels 
of impairment in other cognitive domains, essentially preserved activ-
ities of daily living, and an absence of dementia. 

For the preprocessing pipeline of each subject in ADNI dataset, the 
scanning time was 7 min, corresponding to 140 volumes. To remain the 
signal stabilization, the first three volumes of each subject were removed 
from the fMRI time course. Then, the remaining volumes were processed 
by a well-accepted pipeline based on the Data Processing Assistant for 
Resting-State fMRI (DPARSF) toolbox. More specifically, the first pre-
processing step was head motion correction. The frame-wise displace-
ment (FD) was calculated based on head motion parameters, and the 
subjects with more than 2.5 min of FD larger than 0.5 mm were excluded 
from the dataset. Then, nuisance regression was used to reduce the in-
fluence of the ventricle and white matter signals, as well as the high- 
order effect of head motion based on Friston 24-parameters model. 
After that, the corrected images were registered to the standard Mon-
treal Neurological Institute (MNI) space, followed by spatially smooth-
ing with the full-width-half-maximum of 4 mm and temporal band-pass 
filtering (0.015 − − 0.150 Hz). Note that, we did not perform scrubbing 
operation for the obtained fMRI data, since it may break the data 
autocorrection structure [22] and produce additional artifacts [23]. 
Finally, according to the automated anatomical labeling (AAL) atlas 
[24], the brain was partition into 116 ROIs, and the mean time series of 
each ROI were placed in order into a data matrix X ∈ R137×116. It is worth 
noting that we use AAL atlas to parcellate ROIs mainly due to its 
popularity and simplicity. In the discussion section, we will give more 
details of the atlas selection problem and its possible effects on the 
subsequent results. 

For the ABIDE dataset, 184 subjects (including 79 ASDs and 105 NCs) 
from the largest site (i.e., NYU) were used in our study. The demographic 
information of these subjects was shown in Table 1. All fMRI data were 
acquired based on a standard echo-planar imaging sequence on a clinical 
routine 3.0 Tesla Allegra scanner with the following imaging parame-
ters: TR/TE is 2, 000/15 ms with 180 volumes, the number of slices is 33, 
and the slice thickness is 4.0 mm. All the involved fMRI data are pro-
vided by the Preprocessed Connectome Project initiative, and further 
preprocessed by DPARSF [25]. Specifically, the preprocessed pipeline 
can be mainly divided into four steps: (1) volume slices and head motion 
correction, (2) nuisance signals regression (ventricle, white matter sig-
nals and the high-order effect of head motion described by Friston 
24-parameters model), (3) registration to MNI space, and (4) temporal 
filtering (0.01 − − 0.10 Hz). Subsequently, according to AAL atlas, the 
brain was partitioned into 116 ROIs, and the extracted mean time series 
from all these ROIs were put into a data matrix X ∈ R175×116. 

2.2. Baseline methods for FCN construction 

2.2.1. Pearson’s correlation 
PC is the simplest and most widely used method for estimating FCNs. 

Suppose that our brain has been divided into n ROIs based on a certain 
atlas. Denote xi ∈ Rm as the mean time series extracted from the ith ROI, 
where m is the number of the time points in each series. Let W = (wij) ∈

Rn×n be the adjacency matrix of the estimated FCN. Then, PC-based FCN 
can be formulated as 

wij =
(xi − xi)

T
(xi − xi)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xi)
T
(xi − xi)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xj − xj)
T

√

(xj − xj)

. (1)  

Without loss of generality, we redefine xi = (xi −

xi)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xi)
T
(xi − xi)

√

. That is, the new xi has been centralized by xi −

xi and normalized by 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xi)
T
(xi − xi)

√

. As a result, Eq. (1) can be 
simplified into wij = xT

i xj, which corresponds to the optimal solution of 
the following model: 

2 https:github.com/Leisun981/LeisunFCN 
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minwij

∑n

ij
‖ xi − wijxj‖

2. (2)  

According to a previous work [26], Eq. (2) can be further transformed 
mathematically into the following matrix form: 

minW ‖ W − XT X‖2
F, (3)  

where X = [x1, x2, ⋯ , xn] ∈Rm×n is the BOLD data matrix, and ‖ ⋅ ‖ F 
represents the Frobenius-norm of a matrix [27]. 

In general, the constructed FCN based on PC is a dense graph (i.e., all 
vertices are fully-connected by edges), which may contain noisy or un-
informative information. To remove those noisy connections, the 
thresholding strategy is generally used to sparsify FCNs, requiring 
additional thresholding parameters to be tuned. 

2.2.2. Sparse representation 
SR is one of the commonly-used methods for calculating the partial 

correction. As an alternative to PC, SR aims to estimate more reliable 
connections between two ROIs by regressing out the confounding effect 
from other ROIs. The mathematical model of SR is expressed as follows: 

minwij

∑n

i=1
(‖ xi −

∑

j∕=i

wijxj‖
2 + λ

∑

j∕=i

∣wij|1,

s.t. wii = 0, ∀i = 1,⋯, n
(4)  

which can be further rewritten by the following matrix form: 

minW ‖ X − XW‖
2
F + λ ‖ W‖1,

s.t. wii = 0, ∀i = 1,⋯, n (5)  

where ‖ X − XW‖
2
F is a data fitting term for capturing the partial 

correction information, ‖W ‖ 1 is an l1-regularized term for obtaining 
sparse solutions of W, and λ is a regularization parameter for controlling 
the balance between these two terms. Note that the constraint wii = 0 is 
used here to avoid the trivial solution (i.e., W = I, the identity matrix) by 
implicitly removing xi from X. 

It can be seen from Eq. (5) that, to generate sparse connections in an 
FCN, we need to determine the regularization parameter λ, which is 
usually a challenging task in practice. To address the limitations of PC- 
and SR-based methods, in this work, we propose a hyperparameter-free 
method for constructing sparse FCNs. More details can be found in the 
following section. 

2.2.3. FCN construction based on proposed method 
As mentioned above, the selection of an appropriate threshold or 

regularization parameter for sparsifying FCN is currently still an open 
problem. To estimate sparse FCNs and simultaneously remove the dif-
ficulty of parameter selection, we propose a hyperparameter-free FCN 
learning model as 

minwij

∑n

i=1
‖
∑

j∕=i
wijxi −

∑

j∕=i

wijxj‖
2,

s.t.
∑

j∕=i
wij ≥ 1, ∀i = 1,⋯, n

wij = wji ≥ 0,∀i, j = 1,⋯, n

(6)  

In Eq. (6), we use a similar data-fitting term to that in SR (i.e., Eq. (4) or 
Eq. (5)) for capturing the partial correlation structure in data, but 
remove the l1 regularizer from SR for avoiding the difficulty of selecting 
the optimal regularization parameter. In particular, to prevent trivial 
solution (i.e., wij = 0,∀i.j = 1,⋯,n), we include two constraints in Eq. (6) 
to encourage that the degree of each node is no less than 1 and the edge 
weight in the estimated FCN is nonnegative, respectively. Note that, the 
assumption that edge weight is nonnegative is supported by the struc-
tural equilibrium theory [28,29], in which the estimated network is 

Fig. 1. The main pipeline of disorder identification used in this study, which contains three major modules: (1) data preparation, (2) FCN construction, and (3) 
classification with feature selection, where (1) and (2) will be discussed in Section 2, and (3) will be discussed in Section 3. 

Table 1 
Demographic and clinical information of subjects in the ADNI and ABIDE datasets. Values are reported as mean±standardard deviation. M/F: Male/Female; MMSE: 
Mini-Mental Examination; GCDR: Global Clinical Dementia Rating; FIQ: Full-Scale Intelligence Quotient; VIQ: Verbal Intelligence Quotient; PIQ: Performance In-
telligence Quotient.  

Datasets Class Gender (M/F) Age (Years) MMSE GCDR FIQ VIQ PIQ 

ADNI MCI 39/29 76.50 ± 13.50 28.01 ± 1.64 0.48 ± 0.02 − − −

NC 17/52 71.50 ± 14.50 29.25 ± 1.07 0 − − −

ABIDE ASD 68/11 18.58 ± 11.45 − − 107.92 ± 3.15 105.81 ± 1.23 108.81 ± 2.10  
NC 79/26 19.13 ± 11.85 − − 113.15 ± 2.45 113.13 ± 1.15 115.07 ± 2.08  

L. Sun et al.                                                                                                                                                                                                                                      



Artificial Intelligence In Medicine 111 (2021) 102004

4

structurally balanced if and only if the sign product of all the edges is 
positive. Also, this assumption can simplify the subsequent FCN anal-
ysis, while many functional connectivity measures, such as mutual in-
formation [30], are also nonnegative. In addition, the FCN is constrained 
to be symmetric, which avoids the post-processing step (i.e., symmetri-
zation) involved in traditional methods such as SR. 

Due to the symmetry of the estimated FCNs, we only consider its 
upper triangular elements, and concatenate these elements in a column 
vector w = [w12,w13,⋯,w1n,w23,w24,⋯,wn− 1,n]

T
∈ Rn(n− 1). As a result, 

Eq. (6) can be equivalently transformed into the following quadratic 
programming (QP) problem: 

minw wT Sw,

s.t. Aw ≥ b (7)  

where S, A and b are only dependent of the fMRI data matrix X. Their 
definitions and the related mathematical formulations are provided in 
Appendix. Finally, we solve the QP problem in Eq. (7) by CVX toolbox 
[31], due to its simplicity and popularity. 

From Eqs. (6)–(7), we can see that the proposed model requires no 
parameters for constructing FCNs, which is particularly useful in real- 
world applications. Interestingly, even no free parameters are involved 
in the proposed method, we empirically find that it can generate sparse 
FCNs, as shown in the following experiments. 

2.3. Relationship between regularization term and constraints 

In particular, l1-norm used in SR is the sum of the absolute values of 
all edge weight wij that can be rewritten 

∑n
i.j=1wij, if the non-negative 

constraint requires that wij ≥ 0. However, we cannot prove the rela-
tionship between the constraints and sparsity rigorously in mathematics, 
but can only provide empirical results of sparsity from a perspective of 
experiments (Please see Section 3 for details). 

3. Experiments and results 

3.1. Experimental setting 

After obtaining the pre-processed fMRI data, we estimate FCNs based 
on different methods. In the experiments, we first compare our method 
with two typical methods for FCN construction, i.e., PC and SR. Note that 
the proposed method constrains edge weights of the estimated FCNs to 
be nonnegative. Therefore, besides the comparison with the original PC 
and SR methods, we also compare our method with two additional 
methods, PC+ and SR+, which only keep the positive edges in PC and 
SR, respectively. Since the threshold or regularization parameter is 
included in the baseline methods, we select the threshold corresponding 
to the different sparsity in the set of [0, 10%, ⋯, 90%, 99%] for PC- and 
PC+-based methods, where the percentage indicates the proportion of 
the edges that are removed, and search the value of regularization pa-
rameters in the range of [2− 5, 2− 4, ⋯, 24, 25] for SR- and SR+-based 
methods. In contrast, the proposed FCN estimation method does not 
contain any parameters. 

Once we have obtained FCNs of all subjects, the subsequent task is to 
identify the subjects with MCI (or ASD) from NCs. Now, the problem 
turns to determine which features and classifier should be chosen for 
MCI (or ASD) identification. Since the adjacency matrix of the estimated 
FCN is symmetric, we only consider its upper triangular elements as 
features. In our experiment, each FCN has 116 nodes, and thus can 
produce 6, 670 features (corresponding to 6, 670 functional connections 
between 116 ROIs). Compared to the sample size (less than two hun-
dred), the feature dimension is very high, which not only brings 
expensive computation, but also may affect the classification accuracy, 
due to the so-called curse of dimensionality [32]. To alleviate this 
problem, researchers have proposed numbers of approaches for feature 
selection, such as t-test, least absolute shrinkage and selection operator 

(LASSO) [33], genetic algorithm (GA) [34] and so on. In our paper, we 
only adopt the simple feature selection method (t-test with four accepted 
p-values and LASSO) and linear SVM classifier [35] with default 
parameter C = 1 in our experiment, since it, due to the large marginal 
theory [36], is relatively immune to high dimensions. 

Further, in order to make the best of limited samples (i.e., the esti-
mated FCNs of different subjects) in the training stage, we choose leave- 
one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV) 
to evaluate the performance of involved methods [37]. Of note, the 
proposed FCN estimation method does not contain any hyper-
parameters, and thus will result in a unique classification accuracy. In 
contrast, the threshold or regularization parameter used in the baseline 
methods may affect the final accuracy. Therefore, an inner LOOCV and 
5-fold CV are utilized in the training stage to select the optimal para-
metric values for these methods. 

To evaluate the classification performance of different methods, 
seven performance metrics, including accuracy (ACC), sensitivity (SEN), 
specificity (SPE), balanced accuracy (BAC), positive predictive value 
(PPV), negative predictive value (NPV) and the area under the receiver 
operating characteristic (ROC) curve (AUC) [38], were utilized in this 
paper. These metrics are defined as follows: BAC=(SEN+SPE)/2, 
PPV=TP/(TP+FP) and NPV=TN/(TN+FN), where TP, TN, FP and FN 
indicate true positive, true negative, false positive and false negative 
respectively. 

3.2. Results 

3.2.1. Results of FCN estimation 
In this section, we take one of subject from ADNI dataset as an 

example to visualize the FCNs estimated by five different methods (i.e., 
PC, PC+, SR, SR+ and Ours). Note that the proposed method constrains 
edge weights of the estimated FCN to be nonnegative. Therefore, besides 
the original PC and SR, we also include PC+ and SR+ in our experiments 
for a more comprehensive comparison in the subsequent MCI (or ASD) 
identification task, where PC+ and SR+ only keep the positive edges and 
turn the negative edges into zero in PC and SR, respectively. The results 
are shown in Fig. 2, where the thresholds or regularization parameters 
involved in PC- and SR-based methods are determined according to their 
best classification accuracy. In particular, the thresholds used in PC and 
PC+ are 50% and 40%, while the values of the regularization parameter 
λ used in SR and SR+ are 22 and 25, respectively. 

Based on Fig. 2, we have several observations as follows. First, the 
topological structure of PC- and PC+-based FCNs is significantly 
different from that of SR- and SR+-based FCNs, mainly due to the fact 
that they capture full and partial corrections, respectively, using 
different data-fitting terms. Second, compared with SR, PC generates 
denser FCN, since it is sensitive to both direct and indirect relationships 
between ROIs. Although PC+ improves the sparsity of the estimated 
FCN by removing the negative edges, it is still denser than SR-based 
FCN, because the original PC has already contained false connections 
(e.g., those connections from indirect relationships between ROIs). 
Third, FCNs estimated by SR and SR+ are sparse, not only due to the 
introduction of the l1 regularization term, but also due to their data- 
fitting term that can remove the indirect relationships by regressing 
out the confounding effect from other ROIs. Finally, compared with the 
baseline methods, the FCN estimated by the proposed method looks very 
clean, and, more interestingly, its topological structure is similar to that 
of SR- and SR+-based FCNs, even though no any hyperparameters are 
involved. 

To further discuss the sparsity structure of the FCN estimated by the 
proposed method, we calculate the degree distribution and the number 
of edges of the FCN shown in Fig. 2 (i.e., Fig. 2-Ours), and the result 
shown in Fig. 3. Based on Fig. 3, we can observe that the maximum and 
minimum degree of node (i.e., ROI) are 19 and 4 respectively, which is 
significantly less than the value of node degree in the case of full- 
connected FCN (i.e., 115), and all the total number of edges of this 
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network is 657 (i.e., the density of the network less than 10%), meaning 
that the FCNs estimated by the proposed method is sparse. This finding is 
consistent with the visualized results in Fig. 2. 

3.2.2. Results of MCI identification 
In this section, we report the MCI classification performance of 

different methods under seven evaluation metrics based on LOOCV and 
5-fold CV (repeated 1000 times) in Fig. 4 respectively. 

From Fig. 4, we have the following observations for MCI classifica-
tion task. First, on the basis of the average ACC values, we note that the 
methods that only use the positive edge weights (e.g., PC+ and SR+) can 
generally result in a higher classification accuracy than their original 
counterparts in most cases. For example, for LOOCV, PC+ and SR+
achieve the best classification accuracy of 78.10% and 87.59% with p- 
values of 0.005 and 0.01 respectively; for 5-fold CV, PC+ and SR+ also 
obtain the highest accuracy of 68.49% and 78.00% with p-values of 
0.005 and 0.01, respectively. This is a counterintuitive finding, which 
drives us to think that the positive dependency between ROIs may 
contain more discriminative information for MCI identification. On the 
other hand, the removal of negative edge weights from the estimated 
FCN can reduce the number of features, thus alleviating the curse of 
dimensionality to some extent. Second, even without free parameters for 
FCN estimation, the proposed method is comparable to four competing 

methods in terms of seven evolution metrics based on LOOCV and 5-fold 
CV. Especially with the small p-value of 0.001, for LOOCV, our method 
achieves the average results of ACC=81.75%, SEN=86.76%, 
BAC=81.79%, NPV= 85.48%, and AUC=89.41%; for 5-fold CV, our 
method obtains the average results of ACC=76.00%, SEN=76.10%, 
SPE=75.90%, BAC=75.32%, NPV=74.79%, and AUC=88.26%. They 
are significantly better than four competing methods. 

3.2.3. Results of ASD identification 
For ASD identification, we report the results of ASD vs. NC classifi-

cation achieved by both methods based on LOOCV and 5-fold CV 
respectively in Fig. 5. It can be seen from Fig. 5 that the proposed 
method outperforms the competing methods in terms of the average 
ACC value under the case that p-values are 0.001 and 0.005 based on 
LOOCV. In particular, when p-value is 0.005, the proposed method 
achieves the ACC of 71.74%, SPE of 64.71%, BAC of 70.76%, PPV of 
73.33% and AUC of 79.89%, most of which are higher than the baseline 
methods. For the remaining p-values (i.e., 0.01, 0.05), the proposed 
method (even with unsatisfactory performance) is also comparable to 
the competing methods in the sense of classification accuracy. 

4. Discussion 

In this section, we investigate the effect of brain parcellation, data 
preprocessing steps, feature selection and network modelling parame-
ters on the classification results. Then, we discuss the selection of 
baseline methods, and further show the most discriminative features 
selected by our method for exploring their relationship with brain 
disorders. 

4.1. Brain parcellation 

To our best knowledge, many brain parcellation schemes have been 
developed in the past decades and they can be roughly divided into two 
categories, i.e., atlas-based and data-driven approaches. In atlas-based 
methods, the voxels within the same ROI are supposed to share the 
similar structure or function. Typical atlases include (but not limited to) 
AAL (a structural atlas with 116 ROIs by anatomy of a reference subject) 
[24], Harvard Oxford (HO, a probabilistic atlas of anatomical structures 
with 118 ROIs) [39] and functional connectivity multivariate pattern 
analysis (fcMVPA, a functional atlas with 160 ROIs) [40]. In the second 
category, data-driven schemes can directly work on the obtained fMRI 
data, mainly including clustering method [41] and group independent 
component analysis methods (GICA) [42]. 

To investigate the influence of brain parcellation on the final clas-
sification results, we use the proposed method to estimate FCNs based on 
three different schemes (i.e., AAL, fcMVPA and clustering) for ASD 
classification task, and then show the experimental results in Table 2. It 
can be observed that: when using LOOCV under the p-value of 0.005, our 
method based on AAL atlas can obtain the best classification accuracy, 
while the p-value of 0.01, the performance of our method with fcMVPA 

Fig. 2. The adjacency matrices of FCNs constructed by five different methods (i.e., PC, PC+, SR, SR+ and Ours). Note that the elements in the adjacency matrices 
have been normalized into interval of [− 1,1] for the convenience of comparison. PC+ and SR+ only keep the positive edges in PC and SR by turning their negative 
edges into zero, respectively. 

Fig. 3. The degree distribution of the FCNs estimated by the proposed method. 
Of note, the maximum and minimum degree of node (i.e., ROI) are 19 and 4 
respectively, which is significantly less than the value of node degree in the case 
of full-connected FCN (i.e., 115), and all the total number of edges of this 
network is 657 (i.e., the density of the network less than 10%). 
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is optimal; for the remaining p-values using LOOCV and 5-fold CV, our 
method utilizing clustering-based for brain parcellation achieves the 
highest classification performance. In summary, the performance of 
different approaches (or atlases) may vary under different conditions (e. 
g., p-value or verification mode). There is no atlas that is always optimal 
for ROI definition and classification task. 

4.2. Influence of data preprocessing step 

As mentioned above, many steps are involved in the data pre-
processing pipeline, such as volume slices correction, nuisance regres-
sion, registration, temporal filtering, and so on. However, in this section, 
we only select the nuisance regression (of head motion) as an example to 
investigate the influence of data preprocessing step on the final classi-
fication results, since head motion has significant, systematic influence 
on FCN measures, even as small as 0.1 mm [43,44]. In particular, we 
conduct ASD vs. NC classification experiment based on the ABIDE 
dataset in two cases. In the first case, we process the data without the 
regression of head motion, and then use the FCNs estimated by the 
proposed method to conduct the classification task based on LOOCV and 
5-fold CV. By contrast, in the second case, we process the data by 
including the nuisance regression step, and then perform the subsequent 
tasks. The experimental results in Table 3 show that the proposed 
method based on the preprocessed data can obtain a better classification 
results in most cases, meaning that the data preprocessing steps (at least 
regression of head motion) have a significant effect on the final identi-
fication performance 

4.3. Selection of baseline methods 

As mentioned above, researchers have proposed numbers of ap-
proaches for FCN construction, including PC, SR, DTW and DCM. In our 

paper, we only select PC and SR-based methods as the baseline for 
comparison, since one of our main focuses is the simplicity in estimating 
sparse FCNs by circumventing the challenge of parameter selection. 
Recent reviews [45,46] for exploring network modelling methods also 
employed these two methods as baseline methods. In contrast, DTW and 
DCM are not utilized as baseline methods, because they all assume that 
functional connectivity exhibits dynamic changes within time scales, 
while the proposed method in this paper works on the assumption of 
temporal stationarity. 

4.4. Parameter analysis 

To our best knowledge, feature selection as a dimensionality reduc-
tion technique helps eliminate redundant/noisy features, and is thus 
widely used in fMRI data [47]. At present, there are amounts of feature 
selection methods have been developed, including t-test (or equiva-
lently, Fisher score [48]), LASSO method [33] and GA [34]. To inves-
tigate the influence of different feature selection approaches on the final 
classification results, we take the simple t-test based on different 
p-values and LASSO as examples to perform a control analysis [49–53]. 
Further, we report the optimal results based ont-test under four different 
p-values (i.e., 0.001, 0.005, 0.01, 0.05) and LASSO under different pa-
rameters (i.e., 2− 5, 2− 4,⋯, 24, 25) in Table 4. 

Based on the results in Table 4, we note that several methods using 
LASSO tend to perform well under seven performance indices in some 
cases, indicating that LASSO method takes into account the importance 
of combined features, and thus generally obtain better performance 
compared with t-test. In other words, an appropriate feature selection 
approach can contribute to achieve better classification results. 

Fig. 4. The MCI classification results of five methods (i.e., PC, PC+, SR, SR+ and Ours) based on seven performance metrics (i.e., ACC, SEN, SPE, BAC, PPV, NPV and 
AUC) using LOOCV and 5-fold CV. In particular, each subplot represents the classification results under seven performance metrics based on different p-values 
involved in t-test, and the horizontal axis of each subplot shows the average classification results. 
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Fig. 5. The ASD classification results of five methods (i.e., PC, PC+, SR, SR+ and Ours) based on seven performance metrics (i.e., ACC, SEN, SPE, BAC, PPV, NPV and 
AUC) using LOOCV and 5-fold CV. In particular, each subplot represents the classification results under seven performance metrics based on different p-values 
involved in t-test, and the horizontal axis of each subplot shows the average classification results. 

Table 2 
The classification results based on the proposed method using different atlases for brain parcellation. Specifically, the first, second and third row of each p-value 
represents the results based on the AAL, fcMVPA [40] and clustering [41] for defining ROIs. CV: cross validation.  

CV p-value Atlas ACC SEN SPE BAC PPV NPV ROC 

LOOCV p=0.001 AAL 59.78% 44.12% 66.67% 55.39% 56.60% 54.76% 57.69%   
fcMVPA 58.70% 41.77% 71.43% 56.60% 52.38% 61.98% 48.51%   
Clustering 68.48% 58.23% 76.19% 67.21% 64.79% 70.80% 74.83%  

p=0.005 AAL 71.74% 64.71% 76.81% 70.76% 73.33% 68.83% 78.06%   
fcMVPA 64.67% 46.84% 78.10% 62.47% 61.67% 66.13% 69.73%   
Clustering 70.11% 69.62% 70.48% 70.05% 63.95% 75.51% 75.53%  

p=0.01 AAL 62.50% 58.82% 65.22% 62.02% 62.50% 61.64% 67.00%   
fcMVPA 66.85% 63.29% 69.52% 66.41% 60.98% 71.57% 70.40%   
Clustering 59.24% 49.37% 66.67% 58.02% 52.07% 63.64% 61.77%  

p=0.05 AAL 60.33% 58.82% 60.87% 59.85% 59.70% 60.06% 64.21%   
fcMVPA 54.35% 39.24% 65.71% 52.48% 46.27% 58.97% 50.45%   
Clustering 71.74% 69.62% 73.33% 71.48% 66.27% 76.24% 79.16% 

5-fold CV p=0.001 AAL 59.00% 38.75% 71.56% 55.16% 50.61% 60.87% 65.00%   
fcMVPA 59.30% 51.20% 65.83% 58.52% 59.17% 64.30% 68.54%   
Clustering 59.31% 52.82% 65.80% 58.52% 51.57% 64.30% 69.46%  

p=0.005 AAL 62.10% 54.10% 70.10% 58.33% 53.60% 63.77% 67.00%   
fcMVPA 58.44% 51.73% 64.07% 57.90% 52.13% 63.94% 63.64%   
Clustering 65.65% 58.46% 71.47% 64.97% 60.85% 69.66% 76.30%  

p=0.01 AAL 62.11% 53.23% 69.47% 60.13% 55.24% 65.00% 70.19%   
fcMVPA 58.88% 52.71% 64.00% 58.35% 52.57% 64.39% 65.14%   
Clustering 66.86% 59.45% 72.81% 66.13% 62.35% 70.58% 77.65%  

p=0.05 AAL 57.60% 57.44% 57.72% 57.58% 50.59% 64.36% 74.18%   
fcMVPA 59.77% 51.36% 66.81% 59.08% 53.85% 64.69% 67.39%   
Clustering 66.74% 56.54% 74.95% 65.75% 63.10% 69.70% 77.43%  
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Table 3 
The classification results of the proposed method based on different p-values using LOOCV and 5-fold CV. In particular, each p-value corresponds to two different 
classification results, where the NE label 0 and 1 indicates the results based on the preprocessed data without NE (NE=0) and with NE (NE=1), respectively. NE: 
Nuisance Regression.  

CV p-value NE ACC SEN SPE BAC PPV NPV ROC 

LOOCV p=0.001 0 60.87% 31.65% 82.86% 57.25% 58.14% 61.70% 46.67%   
1 59.78% 44.30% 71.43% 57.87% 53.85% 63.03% 57.69%  

p=0.005 0 51.09% 37.97% 60.95% 49.46% 42.25% 56.64% 48.43%   
1 71.74% 65.82% 76.19% 71.01% 67.53% 74.77% 78.06%  

p=0.01 0 61.41% 48.10% 71.43% 59.76% 55.88% 64.66% 63.61%   
1 62.50% 59.49% 64.76% 62.13% 55.95% 68.00% 66.99%  

p=0.05 0 54.89% 43.04% 63.81% 53.42% 47.22% 59.82% 53.69%   
1 60.33% 59.49% 60.95% 60.22% 53.41% 66.67% 64.21% 

5-fold CV p=0.001 0 56.28% 27.48% 77.96% 52.72% 48.64% 58.82% 51.04%   
1 57.61% 38.61% 71.91% 55.26% 50.87% 60.91% 62.45%  

p=0.005 0 53.95% 40.41% 64.15% 52.28% 45.93% 58.86% 55.46%   
1 59.70% 48.40% 68.19% 58.30% 53.43% 63.75% 67.26%  

p=0.01 0 56.03% 46.53% 63.17% 54.85% 48.76% 61.12% 62.00%   
1 59.80% 51.16% 66.30% 58.73% 53.38% 64.37% 68.80%  

p=0.05 0 57.96% 50.06% 63.90% 56.98% 51.12% 62.99% 66.33%   
1 57.92% 58.03% 57.94% 57.94% 50.91% 64.73% 67.56%  

Table 4 
The classification results under seven performance indices of five different methods. Specifically, the first and second row of each method represents the optimal results 
on t-test under four different p-values (0.001, 0.005, 0.01, 0.05) and LASSO under different parameters (2− 5, 2− 4, ⋯ , 24, 25). CV: cross validation.  

Dataset CV Method Feature selection ACC SEN SPE BAC PPV NPV ROC 

ADNI LOOCV PC t-test 78.10% 80.88% 75.36% 78.12% 76.39% 80.00% 90.15%    
LASSO 83.21% 85.29% 81.16% 83.23% 81.69% 84.85% 89.41%   

PC+ t-test 83.94% 88.24% 79.71% 83.97% 81.08% 87.30% 91.37%    
LASSO 84.67% 82.83% 85.51% 84.67% 85.07% 84.29% 90.37%   

SR t-test 81.02% 85.29% 76.81% 81.05% 78.38% 84.13% 91.47%    
LASSO 86.13% 85.29% 86.96% 86.13% 86.57% 85.71% 93.22%   

SR+ t-test 86.86% 88.24% 85.51% 86.87% 85.71% 88.06% 93.35%    
LASSO 90.51% 91.18% 89.86% 90.52% 89.86% 91.18% 95.65%   

Ours t-test 83.21% 82.35% 84.06% 83.21% 83.58% 82.86% 88.94%    
LASSO 87.14% 85.31% 88.13% 86.72% 86.49% 87.53% 92.77%  

5-fold CV PC t-test 79.09% 79.45% 78.75% 79.10% 78.70% 79.59% 89.26%    
LASSO 76.88% 79.08% 77.03% 78.06% 76.37% 78.43% 86.54%   

PC+ t-test 79.06% 77.92% 80.20% 79.06% 79.62% 78.71% 88.10%    
LASSO 77.62% 78.62% 79.34% 78.98% 76.77% 78.61% 87.34%   

SR t-test 80.55% 83.00% 78.10% 81.00% 79.00% 83.44% 92.20%    
LASSO 82.96% 81.34% 81.76% 81.55% 80.37% 84.78% 92.56%   

SR+ t-test 79.37% 78.74% 80.00% 79.37% 79.64% 79.35% 94.00%    
LASSO 86.35% 86.29% 86.84% 86.56% 86.88% 86.23% 95.20%   

Ours t-test 81.10% 80.20% 82.00% 81.05% 80.64% 80.64% 94.10%    
LASSO 84.24% 87.99% 80.60% 84.29% 82.53% 87.19% 90.13% 

ABIDE LOOCV PC t-test 70.11% 59.49% 78.10% 68.79% 67.14% 71.93% 77.38%    
LASSO 68.48% 53.16% 80.00% 66.58% 66.67% 69.42% 77.87%   

PC+ t-test 73.37% 69.92% 76.19% 72.91% 68.75% 76.92% 83.19%    
LASSO 65.69% 61.76% 69.57% 65.66% 66.67% 64.86% 73.80%   

SR t-test 68.48% 62.03% 73.33% 67.68% 63.64% 71.96% 75.07%    
LASSO 64.96% 60.29% 69.57% 64.93% 66.13% 64.00% 71.73%   

SR+ t-test 69.57% 59.49% 77.14% 68.32% 66.20% 71.68% 71.96%    
LASSO 54.01% 33.82% 73.91% 54.01% 56.10% 53.14% 41.42%   

Ours t-test 71.74% 65.82% 76.19% 71.01% 67.53% 74.77% 78.06%    
LASSO 67.15% 64.71% 69.57% 67.14% 67.69% 66.67% 68.44%  

5-fold CV PC t-test 65.94% 57.80% 72.07% 64.94% 60.96% 69.44% 74.09%    
LASSO 61.64% 52.78% 69.38% 61.08% 57.78% 65.66% 62.71%   

PC+ t-test 70.93% 73.23% 68.63% 70.93% 69.81% 73.24% 77.60%    
LASSO 67.14% 60.00% 74.24% 67.12% 63.69% 71.34% 74.74%   

SR t-test 65.05% 28.77% 92.34% 60.56% 73.96% 63.28% 40.37%    
LASSO 62.89% 49.99% 73.33% 61.66% 58.07% 66.12% 65.08%   

SR+ t-test 64.07% 27.53% 91.57% 59.55% 71.05% 62.69% 39.94%    
LASSO 59.21% 46.82% 68.66% 57.74% 55.89% 62.92% 61.40%   

Ours t-test 62.00% 53.00% 69.00% 60.20% 55.00% 65.10% 70.00%    
LASSO 65.60% 59.79% 70.78% 65.29% 60.64% 70.07% 71.95%  
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4.5. Sensitivity to network modelling parameters 

In practice, the final classification accuracies are not only affected by 
p-values used in the stage of feature selection, but also by different 
network modelling parameters (e.g., thresholds and regularization pa-
rameters). In order to investigate their influence on the classification 
accuracy, we conduct MCI (and ASD) classification experiments, and 
report their results under different values of thresholds or regularization 
parameters in Fig. 6. 

Based on Fig. 6, we discuss the effect of the FCN modelling param-
eters on the MCI (and ASD) classification task. First, the accuracies of the 
baseline methods for both MCI and and ASD classification fluctuate 
heavily with the change of the parametric values, indicating that they 
are sensitive to the FCN modelling parameters. In contrast, the proposed 
method achieves a unique solution, since no free parameter is included 
in the FCN estimation model. Second, the baseline methods can generally 
obtain high accuracy under some specific thresholds or regularization 
parameters, but the high accuracy cannot be reached in their final re-
sults shown in Fig. 4 (or Fig. 5) by the inner loop of cross validation. For 
example, SR achieves the accuracy of 81.02% under the regularization 
parameter of 25 with the p-value of 0.005 for MCI identification, while 
its final accuracy with parametric values selected by cross validation is 
only 67.88%. Third, it can be observed that, SR and SR+ work well for 
MCI identification, but perform poorly for ASD classification, even 
though the regularization parameters are included in their model, which 
indicates that no method is always effective for all tasks or databases (as 
described by the famous no-free-lunch theorem [54]). Finally, although 
it achieves a comparable performance in many cases, we also note that, 

for ASD identification task, the proposed method performs poorly 
(especially under some p-values), suggesting that our method is not 
flexible enough to estimate FCNs, since no free parameter can be 
adjusted in practice. From this point of view, the selection of the 
hyperparameter is in fact a double-edged sword. We need to choose 
suitable FCN modelling methods according to specific tasks. 

4.6. Discriminative features 

Besides the MCI and ASD classification accuracy itself, an interesting 
problem is which features (i.e., functional connections or corresponding 
ROIs in FCN) contribute most to specific disease identification tasks. In 
this group of experiments, we first select the 75 (for p-value of 0.01) and 
19 (for p-value of 0.005) most discriminative features corresponding to 
the best accuracy of MCI and ASD classification tasks, and further 
visualize them in Fig. 7(A)-(B), respectively. 

Specifically, each arc in Fig. 7 shows the selected feature between 
two ROIs, where the color is randomly allocated only for a better visu-
alization. The thickness of each arc indicates its discriminative power 
that is inversely proportional to the corresponding the p-value. 

For MCI classification, we rank the brain regions based on the 
selected discriminative features (functional connections), and find the 
top 3 brain regions are the left cerebellum6, the right angular and the 
right inferior temporal gyrus. According to previous studies [55,56], the 
two of the three brain regions (the first and third) are reported as po-
tential biomarkers for MCI identification. 

Similarly, for ASD classification problem, we find the top 3 most 
discriminative brain regions are the bilateral thalamus, the right 

Fig. 6. The MCI and ASD average classification accuracies based on five FCN estimation methods (i.e., PC, PC+, SR, SR+ and Ours) with different network modelling 
parametric values are shown in the top and bottom part of this figure respectively. Note that, the horizontal axis for PC-based methods represents different thresholds, 
and for SR-based methods show the regularization parameters, while the vertical axis for five methods represents the average classification accuracies. 
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parahippocampal gurus. According to previous studies [57,58], all brain 
regions may be biologically associated with ASD. These results further 
validate that our method is potentially useful in discovering fMRI bio-
markers for MCI and ASD identification. 

5. Conclusion 

In this paper, we propose a hyperparameter-free FCN estimation 
model to circumvent the parametric selection problem in previous PC- 
based and SR-based methods. Then, we transform this model into a 
QP problem that can be efficiently solved by an off-the-shelf toolbox. To 
evaluate the effectiveness of the proposed method, we conduct experi-
ments on two benchmark databases with rs-fMRI data for both MCI and 
ASD identification. The experimental results demonstrate that the pro-
posed method can achieve comparable performance even though no 
parameter is included in our model. However, the selection of the 
hyperparameter is a double-edged sword. It avoids the difficulty of 

parameter selection, but, on the other hand, reduces the flexibility of the 
FCN estimation model. Additionally, the proposed method can only 
encode the positive interaction between ROIs. Therefore, we plan to 
develop more powerful hyperparameter-free FCN modelling methods 
that can capture both positive and negative dependency between ROIs in 
the future. 
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Appendix 

As shown in Section 2, the proposed model is formulated as 

minwij f (W) =
∑n

i=1
‖
∑

j∕=i
wijxi −

∑

j∕=i

wijxj‖
2.

s.t.
∑

j∕=i
wij ≥ 1,∀i = 1,⋯, n

wij = wji ≥ 0,∀j = 1,⋯, n

(8)  

In this appendix, we give mathematical derivations for transforming Eq. (8) into a QP problem as follows 

minw wT Sw.

s.t. Aw ≥ b (9) 

Fig. 7. The most discriminative features selected by the best accuracy of MCI identification (i.e., MCI vs. NC classification) and ASD identification (i.e., ASD vs. NC 
classification) tasks based on AAL template respectively. Note that, each arc shows the selected feature between two ROIs, where the color is randomly allocated only 
for a better visualization, and the thickness of each arc indicates its discriminative power that is inversely proportional to the corresponding the p-value. In addition, 
this figure is created by a Matlab function (i.e., circularGraph) shared by Paul Kassebaum (http://www.mathworks.com/matlabcentral/fileexchange/48576- 
circulargraph). 
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In particular, the mathematical derivations include the following two steps. 
Step I: Proof of the equivalence between the objective functions in Eqs. (6) and (7) under the symmetric constraint of wij = wji ≥ 0,∀j = 1,⋯,n. 
Concretely, let di =

∑
j∕=iwij be the degree of the ith node, ei be a unit column vector in which the ith element is 1 and the other elements are 0, and 

Wi = [wi1,wi2,⋯,win]
T be the ith column of W. Then f(W) can be rewritten as follows 

f (W) =
∑n

i=1
‖
∑

j∕=i
wijxi −

∑

j∕=i

wijxj‖
2

=
∑n

i=1
‖ Xeidi − XWi‖

2

= tr(
∑n

i=1
(Xeidi − XWi)(Xeidi − XWi)

T
)

= tr(X
∑n

i=1
(eidi − Wi)(eidi − Wi)

T XT)

= tr(X(DDT − DWT − WD + WWT)XT)

= tr(X(D − W)
T
(D − W)XT)

=‖ (D − W)XT‖
2
F,

(10)  

where tr(⋅) indicates the trace of a matrix, and D is a diagonal matrix whose diagonal elements are given by di. 
Furthermore, we transform f(W) =‖ (D − W)XT‖

2
F into a standard quadratic form according to the trick used in. First, let x(k) be the kth column of 

XT, z = n(n − 1)/2 be the number of all possible edges, and w = [w12,w13,⋯,w1n,w23,⋯,wn− 1,n]
T
∈ Rz be a column vector concatenated by the upper 

triangular elements in the matrix W. Then, we define G to be an n × z matrix whose nonzero elements are given as follows: 

Gi,index(wa,b) = 1, ∀i = a = 1,⋯, n − 1
Gj,index(wa,b) = − 1, ∀j = a = 2,⋯, n, (11)  

where index(wab) ∈ 1,2,⋯, z is the index of wab in w. In addition, we define P as a diagonal matrix with diagonal elements given by w. As a result, D − W 
can be formulated as GPGT. Therefore, we have the following expression: 

f (W) =‖ (D − W)XT‖
2
F

=
∑m

k=1
‖ (D − W)x(k)‖2

=
∑m

k=1
‖ GPGT x(k)‖2

=
∑m

k=1
‖ GPh(k)‖2

=
∑m

k=1
‖ GH(k)w‖2

= wT Sw,

(12)  

where h(k) is GTxk, H(k)is a diagonal matrix whose diagonal elements are given by h(k), and S =
∑m

k=1(GH(k))T(GHk). 
Step II: Proof of the equivalence between the constraints in Eqs. (6) and (7). 
Concretely, the constraint 

∑
j∕=iwij ≥ 1,∀i = 1,⋯, n can be equally converted into Cw ≥ e, where C = (abs(Gil)) ∈ Rn×z, ∀ i = 1, ⋯ , n, l = 1, ⋯ , z, and 

e ∈ Rn is the all 1 column vector. Since w only contains the upper triangular elements of the matrix W, the constraint wij = wji ≥ 0, ∀i, j = 1,⋯, n can be 
changed to Iw ≥ 0, where I is the unit matrix, and 0 is the all zeros column vector. To further simplify the above forms, the final constraints in Eqs. (6) 
can be written as Aw ≥ b, where A = [CTI]T , b = [eT0T ]

T. 
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